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SUMMARY

Formal transport theory is used to derive expressions for
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Notation

Vectors of any dimension are boldface (a) in matrix notation and have a single subscript (’]x) in
tensor notation. Second rank tensors (Aij) are written as square matrices and appear in sans-serif

typeface (A).

A dot between two quantities written in matrix notation corresponds to contraction on

one index in tensor notation. Where confusion may arise in transferring from one notation to another,

a matrix in the form A is written in tensor notation as A} I

A list of symbols used in this report follows.

the symbol first appears.

A

coordinate transformation matrix
dimensionless function of &, and H

speed of light

elements of isotropic fourth rank tensor
integral over surface of constant &
denominator of energy integral for large H
energy of electron with wave number k
absolute value of electronic charge
electric field strength

energy factor in transport integral
perturbed and equilibrium electron distribution functions
magnetic field

Planck's constant + 2«

electric current

unit matrix

transport integral for small H

current density

electron wave vector

transport integral for large H

relaxation time proportionality constant

component of effective mass tensor corresponding to direction k, in

standard orientation
effective mass tensor
number of valleys in polycrystalline material

constant factor in transport integrals

The number refers to the equation (page) where

42
61

53

14
19

49

17
10

22

50
17



area vector of plane through a sample of polycrystalline material

area vector of a single crystal sliced by plane S
velocity of electron with wave vector k

wave vector for spherically symmetric energy surfaces
arbitrary vectors

= cos ¢ (when not a cartesian coordinate)
relaxation time energy exponent

determinant ofm = m m, m,

kronecker delta symbol

permutation symbol

Euler angle or polar angle, depending on context
anisotropy parameter

conductivity tensor

conductivity tensor averaged over orientation

relaxation time

energy factor in deviation of distribution function from equilibrium

Euler angle
Euler angle
magnetoconductivity tensor for weak H

energy dependent factor in D(H)

vi
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GALVANOMAGNETIC EFFECTS IN POLYCRYSTALLINE
MANY VALLEY SEMICONDUCTORS

by
John H. Marburger, III
Goddard Space Flight Center

INTRODUCTION

The many valley model of the energy band structure of semiconductors has proved to be a fruitful
and illuminating concept in the explanation of electron transport phenomena. Recently it has been
shown that in addition to germanium and silicon, for which the model was originally developed, a
number of other semiconductors of current technical importance exhibit a many valley band structure.*
Present treatments of the theory of transport phenomena for these substances are principally con-
cerned with the results for single crystal specimens. Indeed, it was through the measurement of
single crystal properties that the failure of the spherically symmetric theory first became evident.
Nevertheless, it is of some interest to determine how the parameters characterizing the single crystal
case reveal themselves in measurements on polycrystalline samples.

We would expect a sample to show isotropic symmetry, as in the spherically symmetric case, but
in place of the conventional scalar effective mass we would expect to find combinations of the ""longi-
tudinal” and ""transverse' effective masses which characterize a single valley. Just what combinations
of these parameters appear and whether they appear in the same combinations in different transport
phenomena are to be determined by direct appeal to the general theory.

What follows are a review of the mathematical techniques of the manyvalley theory and an analysis
of the manner in which the theory yields results for polycrystalline materials. The first part is a re-
view of the methods of solving the Boltzmann transport equation for a single valley. The second sec-
tion is a detailed discussion of the mathematical problem of describing real materials in terms of the
single valley parameters.

Most of this material may be found in the references. An attempt is made here to simplify the
treatment and provide a straightforward and self-contained presentation of the theory of the isothermal
galvanomagnetic effects for polycrystalline many valley semiconductors. The development for the case
of strong magnetic fields has not been given elsewhere.

*See discussion group sections of Reference 1, and references cited in Reference 2.



THEORY FOR A SINGLE VALLEY
The Model

The postulates for the simple many valley model were formulated in 1954 by Abeles and Meiboom
and by Snibuya (References 3 and 4). In this model the surfaces of constant energy in crystal momen-
tum space (k space) are assumed to be ellipsoids of the form

. 42 [k k2 k]
S = R (1)

where m is the component of the effective mass tensor in the direction of k,. It is evident that one
valley of this form will not in general possess the symmetry of the crystal. To achieve this symmetr:
a set of such valleys in the Brillouin zone must be postulated, arranged so that the sum of the proper-
ties of the minima will exhibit the symmetry of the crystal. In many cases several such sets may
satisfy the symmetry requirements. Herring has pointed out that such surfaces may be complicated
by degeneracy (Reference 5), but, since there are sufficient cases of interest in which it is not im-
portant, this complication will not be discussed here. Neither will the possibility of an anisotropic
relaxation time be discussed. However the relaxation time will depend on an arbitrary power of

energy & . Thus

e,) = w6y, (2)

where / and « are independent of energy (but perhaps dependent on temperature). Finally, we shall
ignore any contribution to r arising from the scattering of electrons between different valleys (inter -
valley scattering) and focus attention on the processes taking place in a single valley (infravalley
scattering). This simplification allows the representation of the properties of a real materialas a sun
over the properties of a single valley. For a discussion of the effect of these approximations on the
final results, see the excellent articles by Herring (Reference 5) and Herring and Vogt (Reference 6).

Solution of the Transport Equation

This section will consider methods of solving the isothermal Boltzmann transport equation for th
electron distribution function f:

%[E‘%%(vkxﬂ)}'ka*,rgk = 0. )

E and H are the electric and magnetic field strengths, v, is the velocity of an electron with energy & .,

k
and - e is the electronic charge. Following the conventional approach, let

K v (4)



where f, is the Fermi-Dirac distribution function. Substitution of Equation 4 into Equation 3 yields

- eTr

1
ok = T[‘hlﬂ'vkv‘gﬂ'vkkad’(k)], (5)

where a term of the order E - ¥, #(k] has been neglected and the relation v, & =+ v, has been used to

simplify the expression.

The form of Equation 5 suggests an iterative method of solution for small values of H. If the term
in H is ignored, the "zeroth order' approximation is

o(Ok) = -~ erE - v, (6)

which, substituted into Equation 5, gives

-er her

DY) = T(T\E'Vk__c—ﬂ'vkx'“_l'E)' (M

The relationt?m™! = v, V, & has been used; m™! is the inverse effective mass tensor. In that which
follows it will be assumed that, for the single valley under consideration, the coordinate axes in k space
lie along the principal axes of the ellipsoid. This will be the standard ovientation. Higher order ap-
proximations are obtained similarly. For example,

- er

m
*DK) = |:'hE-vk— =

c "V

e2 2

+ H'vkka(ﬂ'vkr<m"l'[‘:)}~ (8)

C

Higher approximations than this need not be computed if the magnetic field is sufficiently weak.

Although it is not obvious from Equations 6-8, the series solution given by this technique can be
expressed in a closed form. Wilson shows for the isotropic case (m™! a scalar) how this form may be
obtained by direct solution of Equation 5 (Reference 7, page 210). The procedure when m~! is a tensor
is not significantly different and leads to the exact form:

21
~eT vy '{E— % (m—1 . E)xH+<"TCe—> Am-HE- H)}
k) - ’ 9)

where A = det m, and m-m™! = m ! -m =1 , the unit tensor. Equation 9 must be used to compute
transport properties when strong magnetic fields are present. Unfortunately the appearance of min
the denominator of this form causes a vast complication. For this reason most discussions of the
galvanomagnetic effects concentrate on Equation 8, which is only applicable in the limit of low fields.
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Another method of solving Equation 5 has been employed by a number of workers.* This approach
involves transforming to a coordinate system in which the three independent components of the effec-
tive mass tensor are equal. The transformed equation may then be solved as in the spherically sym-
metric case and the solution transformed back to the original anisotropic system. This procedure
side-steps some computational work, but the results are the same as for the methods previously
described. In the next section this transformation will be used to simplify the transport integrals.

An approach entirely different from that outlined here is discussed by McClure (Reference 9).
Although his treatment is more general, it hardly lends itself to practical computations of the sort
performed here.

Conductivity for a Single Valley

Now we shall consider in some detail the result of substituting the expression for ¢{k!{rom Equa--
tion 8 or 9 into the integral defining the electric current density J:

3= =5 [ :
af,
- olk) 35— 43k ,
473 Vi JE, (10)

where d3k denotes a volume element in crystal momentum space. The integration is to be taken over
all space. Evidently this substitution will lead to quite different forms depending on whether Equation
8 or 9 is used, although for weak magnetic fields they should give the same results. Each form re-
quires special treatment.

Case 1—Weak Magnetic Fields

By writing out Equation 8 in component form and simplifying, the entire expression becomes

- + _
oDk = J:T{mﬁ-vk— v, (w7t E)xn

2
+<e—;) v, - [m-BH- 1] -E}» (11)

where A = m m.,m, and | is the three-dimensional unit matrix.

17273

*References 2 and 6 are representative. Reference 8 also includes a discussion of this technique.



Substituting this into Equation 10 yields

o2 af, o3 ) af,
v v - F— 43 — 2.y - 1) . — 43k
J 2.5 ) v, ~E at, d°k PRk L (H-m > E ag, d>k

N 1 . af
- fj Sy v, Lmeml - Mo W] BT Bk (12)

D43 a2
457 ¢ k

Now recall that+k m - v, . Since the region of integration includes all directions and magnitudes of
k, all integrals in Equation 12 containing a product v, v (i 7 j! will vanish. The remaining integrals

each contain a factor v? 2 klz/'/ml2 (i 1, 2, 3). A further simplification results from the relation

Pk ds df:k
"‘vk &, | (13)

where dsis an element of area on a surface of constant &, in k space. This allows us to cast all de-
pendence on k into a single factor common to all the integrals of Equation 12:

K 2
T ——dS .
|V Gl (14)

Here the integrals extend over a surface of constant &, . These integrals are evaluated most conven-
iently in a coordinate system in which the surfaces of constant energy are spherical. Denote the new

coordinates by w; then such surfaces must have the form

. . 2 42

fﬂk f&w ’? (w 12 1w 22 1 \,\‘32> ‘—2 w2
Comparison with Equation 1 shows that

kl
W
i m‘1,' 2
Thus
d3k <m1 m, n»3)1‘2d3w
AV AS dE HY2 48 dé
‘ Fw t;w -hZ w
But
ds w? df dicos r] ,



where ' and // are the polar angles corresponding to w. Therefore

Tr2eoat 2mi \\‘x2 wd/ dicos !
n -
Jx TIS

-1v0

1 8
T —— VY2 = A2 8302 ) )
-hS 3 ‘/— m,; ‘k (15

With these simplifications Equation 12 becomes

2}/2_02 172 (

af,
< e R ~ .
e'kl»wkS 2 s (]L“k m 1. E
e

J = - 50
3h 0 k /
x ;
1/ TSI U | LY S T
3293 o 12 . Ty ,;c_:k Oy m

2t (0, e
== L3 18 . . . . - F
PP 1_,60 SN Mg -m ' H-m-H 1] - E. (16

The following abbreviations are useful:

3‘21’!3
* af
}((n) )Ij' A (l;k3 2 '_)‘_O "c’ik .
0 g (17
In this notation
J O O LI RERE T
e? 1
[ [ D . CH . K
;A HH-m - Hem ) - K (18

the explicit form of the conductivity tensor for a single valley in a weak magnetic field.



Case 2—Strong Magnetic Fields

Substitution of Equation 9 into Equation 10 yields

2 {rv, v, + Edf
e Ir~vrereliel "
G Di{H!} db,

e? ¢ 72 vV, Hx m?! - E&fo
= 3
‘ DiH) Ak, 4k

e? sen? 1 73 vV, m - HiH-E} df,
- - = —2 3
473 <C) & DH) I, 47k (19)
where
i B Tey? 1 X
DHI ~ 1 () zlmem (20)

All the arguments used in simplifying Equation 12 are also valid in the strong field case, the simplified
form of Equation 19 being

e

: 1
J = -RYMIiw! - E+ Zx MPH m-H) - E (21)

2
(e ARomnm B

where

. 7" {‘kj'ﬂz af,
KoYy - T 38 dé&, .
o DI 0 R (22)

This form differs notably from Equation 18 only in the last term, where all the orientation dependence
is contained in the integral K3 (H! .

EXTENSION OF THE THEORY TO MANY VALLEYS

Theory for a Single Crystal

In discussing the model it was observed that, for a model based on anisotropy in the energy band
minima to exhibit the symmetry of a real crystal, there must be several such minima distributed ac-
cording to that symmetry. The properties of the crystal itself will be sums of the properties of dif-
ferently oriented valleys. This section will discuss the techniques of transforming the results for a
minimum of standard orientation into those for minima oriented in other arbitrary directions.



Equations 18 and 21 can be written in the abbreviated form

J o e - E. (23)

where the components of the second rank tensor «'H) may depend on H. The elements of ¢'H! may be
determined from Equations 18 and 21 by inspection. Equation 23 shows that the problem of finding the
relation between J and K for various orientations of a valley reduces to the problem of finding how
o0 changes under a rotation of the coordinate system. Thus, if there are N equivalent valleys in the
Brillouin zone symmetrically disposed about an axis, the conductivity for a single crystal will be

o Zuwlr . (24)

The tensors ¢ “ViH! all transform into one another when the coordinate system is rotated through a
multiple of 2--N radians about the axis of symmetry. The treatment is analogous for other types of
symmetry.

If oiH) were a true tensor, a o' {Hicould be found in some rotated system merely by applying the
transformation A defined by
X Aox o, (25)
where x’' and x are vectors in the transformed and untransformed spaces, respectively.* For the cor-
responding second rank tensor transformation, in matrix notation,
o' Ao - Al (26)

If, however, oiH!is inserted into Equation 26, a new tensor is found in which the magnetic {ield H has
been rotated with the coordinate system. Consequently, Equation 26 does not preserve the angle be-
tween E and H and requires modification. Actually all that is necessary is the application of an in-
verse transformation to H in the transformed tensor. Thus,

o I A L(A’l H)} LA 1)
is the correct expression.

In the case of weak magnetic fields the elements of ¢(H! depend on H in a simple way, and it is
possible to streamline the treatment. For strong magnetic fields, however, the dependence of the
integrals k™ 'Hion Il defies simplification. Both cases will now be treated in detail.

*See any textbook on mechanics, Reference 10 for example.



Case 1—=Weak Maguetic Fields

Equation 18 shows that, for weak magnetic fields, ¢! may be expressed as the sum of three

tensors:

? RS D) % () ? oy (11D
J: 1) EJ ! 11k HJ Ek * 11kl HJ HkEi : (28)

] 1k Ik

Notice that in this form the :'s have no dependence onH. This makes it possible to treat them in the
simplified manner of Equation 26 rather than that of Equation 27. Since only one of the tensors is of

second rank, matrix notation is no longer convenient. In tensor notation Equation 26 becomes

o N .
] L‘ Ank AJ‘.T" ki " (29)
ki
Similar expressions hold for - and Tk - From Equation 18,
"Y:(j” - (m_l)” s (30)
) N e 1
S L— §E mny tm) (31)
/
(e ¥ 1
A - (\r- AR U (32)

where » is the permutation symbol defined by

0 (any two subscripts equal),
%k i 1 (any even permutation of subscripts),
1 (any odd permutation of subscripts).
The fourth rank tensor -y will be discussed after some refinements in notation have been introduced.

Applying Equation 29 to Equations 30 and 31 shows



Since A, = (A' ‘)ki , the first of these may be written in matrix notation as
ol = g A . pl . AL

= -4 (am)" (35)

The second becomes

' el - -
o 7 TEIW ZAU 8 pn (m)pm(A l)mj (A l)nk : (36)
lmn

If we multiply this into H, ‘and contract, we can write in matrix language,

- A - [,(11) (At -H)] AT (37)

in agreement with Equation 27.

To write down an expression for @, , in Equation 32, consider it a transformation of the dyadic
HH rather than of the vector H(H - E}. Since HHis a symmetric tensor, the notation of elasticity
theory* may be used to write it as a six-dimensional vector:

HH—»(H1 H,, H, H,, HyH,, H, H,, Hy H, H, H2) . (38)
Then Q,,,, may be written as a square six-dimensional matrix:
2 = | - (w1 (), (39)

where | is the six-dimensional unit matrix and ( »"!) (m) is not a matrix product but a dyadic formed
from 2 six-dimensional vectors (three components of which vanish, since m and m™! are diagonal in

*See any discussion of elasticity theory, for example Reference 11 or 12.
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this coordinate system). Thus

_ S L B o_1
nll ml

My msy

—Fz 0 Tn; 0 0 0
m ﬂ12

_m—3 -Fs 0 0 0 0

Q - . (40)

0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

Evidently 0 is not symmetric. Although this notation makes it possible to write the fourth rank tensor
in matrix form, it is not particularly useful for calculations. The transformation of a fourth rank ten-
sor is analogous to Equation 29:

2 N T AL A A A
imnp L’ inT'mi “ny Tpk T hijk (41)

hik

Hearmon gives a table of these coeificients for the case of a symmetric fourth rank tensor (Reference
13). A similar table for the nonsymmetric case would be much longer but would contain no new com-
binations. In any case, it is not difficult to deduce such a table from Equation 41.

With the help of Equations 33, 34, and 41 expressions for - (1), ‘fllk”, and . X‘Ji”’ in Equation 28 may
be found which are valid for any orientation of the coordinate system. The particular form of the
transformation matrix A is arbitrary, but one alternative is:

cos i cos.l ~cos: sin ! siny cosisin !t cosocos Cosin siny sin’
A - sini cos:f —cos sin cosy - sinisiny t cos o cos fCos cos ' sin
sini sin - sin ' Cos., cos

Figure 1 depicts the choice of angles (the Euler angles) for this form.

It is still necessary to find the particular transformations which carry the standard valley into
all the others, perform the transformations, and sum to find the total conductivity. These computa-
tions rely on the particular symmetry of the crystal and will not be performed here. It should be
mentioned that in many cases more than one distribution of valleys may satisfy the symmetry require-
ments. Drabble and Wolfe give a treatment similar to the one here, but modified to show explicitly
the separate roles of crystal symmetry and choice of distribution (Reference 14). The present treat-
ment. however, is more appropriate for the averaging process to be discussed later.

11



Table 1 lists references in which explicit calculations have been carried out for particular models
and particular crystal symmetries. In cases for which the computations have not been performed,
simply determine A and follow the procedure outlined here or that in Reference 14.

Case 2—Strong Magnelic Fields

In analogy with Equation 28, Equation 21 may be rewritten:

I, = Z[a“)(m}“ E, +Z[o<”>(ﬂ)]”kﬂj E + Z[o(””(ﬂ)]wﬂj H E, , (43)

i ik ikl

where
[U(I)(H)]” = - K(l)(ﬂl(m_l)i’. , (44)
el
[can ], = Z;E}(”)(H) 5 (mly, (45)
}
2
1.
[cammly, - (2] 2P m 50, . (46)
2,7
BODY AXIS
Z", ZIII
Table 1
References for Explicit Calculations of
SPACE 6 Magnetoconductivity Coefficients
AXIS for Single Crystals.
Crystal Model Refer-
n Symmetry ences
_____ - X
————————— Cubic | 6 ellipsoids, m; =m, # m, 3,4
o (m3m) | 12 ellipsoids, m, =m, # ms 4
/,// 8 ellipsoids, m, =m, # m, 3,4
ol LINE OF NODES Trigonal | 1 ellipsoid, m, = m, # m, 15
(Bm) 3 ellipsoids, m, %m2¥m3 15
o 6 ellipsoids, m, Fmy, #m, 14

Figure 1—Definition of the Euler angles ¢,6, and y.
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Notice that the complicated fourth rank tensor U,

form »,

i \‘kl -

This transforms quite simply:

N

(h*” ‘\‘Jk)

2 Ahf Ann A)n Al\;r X im np

imnp

(A1), A

/ hiow ;i in

(A7)

,«: of the weak field case has been replaced by the

(47)

Transforming any of the tensors in Equation 44-46 yields Equation 33, 34, or 47 multiplied by a fac-

tor containing

where

Notice that

as might have been expected.

[N (A’l .

“H)

ikl

(48)

In actual calculations the integrals of Equation 48 must be evaluated

with a computer. The integrals for different ellipsoids will differ only in the constant term in the de-

nominator. Aside from this complication, the procedure used here is exactly analogous to that used

for the case of weak magnetic fields.
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Theory for Polycrystalline Materials

As the name implies, a polycrystalline material consists of a large number of distinct single
crystals. This section is a discussion of properties of such materials when the individual crystals
are randomly oviented. Without this assumption the theory is prohibitively complex.

If the crystals are randomly oriented, the material will not exhibit direction-dependent properties.
In this case the material is said to be quasi isotropic because, even though the constituent crystals
may be anisotropic, a large sample possesses isotropic symmetry. The procedure adopted here for
calculating the tensor properties of a quasi isotropic substance has been described by Voight for
elastic properties (Reference 11). Keyes has applied this procedure to the conductivities in the
presence of a weak magnetic field (Reference 16). His results will be derived for case 1 and the treat-
ment extended to the strong field, case 2.

The total current flowing through an imaginary plane of area S in the material must be the sum
of the contributions from each of the crystals cut by the plane. If the area of the it "sliced" crystal
is s, then the total current through the plane is

IiZSi“’i'Ei' (49)

where ‘si' = s,. The vector s/{s. is normal to the area element s,. E, and o both refer to the
ith crystal. From this expression it can be seen that the size of the crystals must not be correlated
with their orientation. Obviously, if crystals with a special orientation tend to be larger than average,
their properties will dominate those of the entire material, spoiling the isotropic symmetry.

One further assumption is required for a manageable theory. Since Equation 49 gives no infor-
mation about E , it must be assumed to remain constant over the entire plane S. This is simpler than
the alternative assumption that J is constant over the cross section. In that case the conductivity
tensor for the crystal would have to be inverted and the resulting resistivity tensor summed. But
this requires detailed knowledge of the crystal symmetry and valley distribution. To sum the con-
ductivity tensor, we need only add the contributions of all the valleys throughout the material, which,
for random orientation, amounts to multiplying the orientation average of a single valley by the num-
ber of valleys. Certainly neither of these assertions is entirely realistic, and the alternative which
agrees best with experiment must be chosen. Keyes has discussed this problem and found that the
two alternatives do not give widely divergent results (Reference 16), Indeed, when the constituent
crystals have cubic symmetry the results are identical.

Thus Equation 49 may be rewritten as

I = S'(iZ"i)'E'

14



where, for a large number of crystals,

N 2 1 2m
Z o, - J‘O J“l L ol oyl dgdlicos 1 dy (50)

i

for random orientation of the individual crystals. Nis the total number of valleys. Here advantage
is taken of the fact that the conductivity tensor for an arbitrary choice of a coordinate system is a
function of the elements of the rotation matrix A, which are in turn functions of the angles specifying
the rotation. In that which follows Equation 50 will be applied systematically to each of the expressions
for ¢ (H) derived previously.

Case 1—Weak Magnetic Fields

In this case Equation 50 is applied directly to each of the tensors defined in Equation 28. The
computation is reduced considerably by taking advantage of the known symmetry of the quasi isotropic
material. In such a material the conductivity is a scalar and the Hall conductivity is proportional to
H « E. Thus < ‘D> has the form (D : . (where (D is a scalar) and is completely determined by the
orientation average of a single diagonal element of ¢ (D', From Equations 33 and 50

2m 1 2
' . N
<[°”) ]33> BN J .[ J 2 Ay Ay ImY) ) dedlcos ) dy
ARG -1 Yo S5

N 270 1 2m 1 1

- 4w — sin?#sin? Y+ — sin? Y cos?
2 m ’ m
8% o 1Y 1 2

1
+ o= cos? H> d¢dlcos ) dyr
3

1/1 1 1
~d (1) JEY L S S
] N3< 1 + )

ml m2 m3

FIC DI (51)

An entirely similar argument leads to:

LTI - £ 1 L 1 1
ot c‘q()N3m2m3‘m3ml+mlm2 : (52)

The average for B is found in precisely the same manner: Insert the expressions for the ele-
ments of the transformation matrix into Equation41 and average over all orientations. Voight (Refer-
ence 11) has shown that a fourth rank tensor describing a property of an isotropic material must have

15



the appearance;

c c, c, 0 0 0
c, c <y 0 0 0
c, < S 0 0 0
0 0 0 c, 0 0 (53)
0 0 0 0 c, 0
0 0 0 0 0 c,

where ¢, (c cl) in the notation used here. Thus it is only necessary to compute averages for fwo
elements. The details will be omitted here: Voight has done the computation for a symmetric fourth
rank tensor, and Keyes has obtained a similar result for the nonsymmetric case (Reference 16). In
the notation used here the appropriate averages are

1 fmyimg  mytmp mytmy 2
<31111> ’ 135 m, Toom, b 'm'3'7 ts
2 [mp tmg my tmy my fmy 1
<:‘“22> 15 m, t m, * my -5 $ (54)
a 1 [mptmy mg My My tmy 3
2323 15 m, * m, ' my ] J

Keyes defines an anisotropy parameter

1 /my tmy mytm, mx*”‘z)
O e B
5 S A D,
24 |M \Mg™m, My \my ~my My \ My ™My ' (55)

in terms of which

16



Equations 51, 52, and 56 provide the averages which, substituted into Equation 28, give the conductiv-
ity, Hall conductivity, and magnetoconductivity appropriate for the quasi isotropic case. Thus

1/ 1 1 1
L4 3 T JEE I
<a I>” 4 N 3<m1 S om, ! m3>”.1 B

E‘L‘(Z) N l 1 + 'fl— i 1 5
c 3\mymy T omygmp ompmy/ Tk (57)

N, e\? 1
) - - =] 43 =0
<°(I”)/)x1k1' (C) 4 )Nﬂ<‘ijkl>'

Case 2—-Strong Magnetic Fields

Equations 44-46 show that for a quasi isotropic material in a strong magnetic field the three con-
ductivity tensors are all scalars multiplied by one of the tensors 5 , 5, , Or o o, Thus only one
integration per tensor is necessary to fix the entire average expression. Accordingly, the averages
of [«Dm],,, [e1Dm ], ., and{o('"Om)] ,,, Wwill be computed. First, however, it is necessary
to make two assumptions that simplify the computations considerably: Let the magnetic field point
along the positive z direction, # - (0, 0, H3\),and let the energy surfaces be ellipsoids of revolution,
m, m,. The latter assumption is no more than an artifice to ease the labor of computation, but
nevertheless it imposes a restriction on the generality of our model. It is not a serious limitation,
since in actual practice masses other than the transverse <m1> and longitudinal <m3) are rarely used
to characterize an anisotropic energy surface. Moreover, the symmetry of the crystal under con-
sideration requires that m, - m, if the z axis is one of rotational symmetry .

With this understood, we may write

27 1 27 @® afo
Iy 2
N mek:i a&k 1 o 1 . ~ ,
<[°(I) ““] 33> T 8-5 1+ o H-m-H ET sin® & ¢ E; cos* & dék dpdicos &) dy,
(58)
0 1Yo 0
where
H-m - H -~ sz (ml sin? ¥ +tmg (*0520) . (59)
With the substitution
af,
NR7n 6272 i, F{m (gk) , (60)



Equation 58 may be rewritten as

-1 0
re 1
(L [ g _
[ e,
- s A tan h a duk
J wHg }ms -ml‘
0
C e (s 1 .
F (t’k) my my )ms -m| a tan~! (L) . My M
- - tanh™! \a /d&, mg S My
wHj ’”‘3 ”mll
Yo
where
a =

. 2
“"Hs !m3 ~m1}

and x = cos¢. The functions tan™' {1/a) and tanh™! {1/a) are to be used for the cases m; >m; and

<
my <m,

respectively. Evidently when m; = m, this reduction is not possible. Then, however, all the

angular integrations in Equation 58 are trivial, and an energy integral remains which must be com-

puted numerically in any case. Equation 61 may be rewritten as

<
2 tanh-1! M3 my

DG 1 >
E "/ omy a 1 +mle32 tan~ 1 (L) . m3 My
1+ 2 d{ak .

Next compute

27 *1 27 [t F(Z)(@k)[ml (sin2¢n‘*x2cos2 W) +m3 (1 ,XZ) cos? ¢]

e

1) (! el 1 : Y N
<[¢( )(H,] 123> S CAge ds dydx dg .

o J-tJo Jo 1 5“‘“32[“‘1'(“‘3”"‘1)"2]
Performing the ¢ and ¢ integrations results in

o 1 i
L[ 2 EE) () ()]

-1 Jo 1+ ol [ml : (ms _ml) X2J

[

L dx

B[ =

ole

fomm) -
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which is similar to the form for <a’I>EHJ>. Thus,

- - 2
(II)(H\] > o lel _M}‘M_ ( + ) ' 1 LUH:.’_HEL tan”! (l)df my My
<[° T 23 2cd 1+ wHZm, my Tmg “H? tanh™? \a/% o (63)
Jo 3°my
Finally,
2m 1 27 p® R
211 FO(E,) .
<[°(I“)(H)Lm> - _(_c,> A 8_2 R ) db, d? dx dy
72
0 -1 Jo Jo 1T wHy i:ml N (ma— ml) X }
ey IR ey e
) c/ b L onZm tanho i@/ 64
wHg m, y <My (64)

This expression, together with Equations 62 and 63, gives the form of the strong field conductivity
tensor <,(H)> for polycrystalline materials:

1,05 ) Gmp sk, ) GUmy 5 HE ) (oMM 5 s H M E, . (65)

) jk ik

This completes the extension of the strong field theory to polycrystalline materials.

CONCLUSION

This report has described, in as simple and straightforward a manner as possible, how the many
valley model of energy band structure gives results for polycrystalline materials. It mustbe empha-
sized that these results rely on the assumptions introduced at the beginning of the section on the
"Theory for Polycrystalline Materials™and care must be exercised in using them to interpret experi-
mental data. The method has the advantage that it requires no detailed knowledge of energy band
structure to obtain information about the anisotropy of the material. That such information can be
obtained from polycrystalline samples is a pleasant surprise, since the preparation of single crystals

is often a difficult and expensive task.

The energy integrals that arise in the strong field case in the section mentioned above require
further investigation. Their strong dependence on the effective mass ratio suggests that strong field
measurements on polycrystalline materials may yield valuable information on this parameter.
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ANNOTATED BIBLIOGRAPHY

The following articles supplement the discussion given here. Only papers which discuss the
galvanomagnetic effects have been included, but references to treatments of other crystal properties
may be found in these. Articles in the list of references which are not in this bibliography do not
contain extended discussions of the galvanomagnetic effects.

1. Wilson, A. H., "The Theory of Metals " (Reference 7). Section 8.51 gives a solution of the isotropic
Boltzmann equation for arbitrary magnetic fields, and section 8.55 gives the weak field expansion
for anisotropy in a single minimum in the energy band. No assumption is made concerning the shape
of the energy band, and the effective mass formalism is not used. The many valley theory had not

yet been formulated when this book was written.

2. Blatt, F. J., "Theory of Mobility of Electrons in Solids," in: Solid State Physics: Advances in Re-
search and Applications (Reference 8). Section IV of this review discusses nonspherical energy sur-
faces and anisotropic relaxation times. The treatment follows that of Wilson (Reference 7) and
Herring (Reference 5) very closely. A good discussion on solving the anisotropic Boltzmann equation
by transformation to a spherically symmetric system is included. The list of references in this
article is more extensive than in any other listed here.

3. Abeles, B., and Meiboom, S., "Theory of the Galvanomagnetic Effects in Germanium," Phys. Rev.
vol. 95, pp. 31-37 (Reference 3). This is one of the first papers to appear on the many valley model
and is the best treatment of the galvanomagnetic effects. The presentation is rigorous and almost
self-contained, but extremely concise. Only here and in Shibuya's paper (Reference 4) is the strong

magnetic field case discussed in detail.

4, Shibuya, M., '"Magnetoresistance Effect in Cubic Semiconductors with Spheroidal Energy Surfaces,"
Phys. Rev. vol. 95, pp. 1385-1393 (Reference 4). This paper appeared independently of the previous
article but treats essentially the same problems. Results are given here in somewhat more detail,
but the derivations are more abbreviated.

5. Herring, C., "Transport Properties of a Many-Valley Semiconductor," Bell System Tech. J., vol.
34, pp. 237-290 (Reference 5). A wealth of topics is discussed here: mobility (and its temperature
dependence for intervalley scattering), thermoelectric power, piezoresistance, Hall effect, high fre-
quency dielectric constant, and magnetoresistance. Approximate Maxwell-Boltzmann statistics are
employed throughout, and the notation differs considerably from that used here. The results for the
magnetoresistance are obscured by a complicated notation which nevertheless is useful for compari-

sons with observations.

6. Herring, C.,and Vogt, E. "Transport and Deformation- Potential Theory for Many-Valley Semicon-
ductors with Anisotropic Scattering,"” Phys. Rev. vol. 101, pp. 944-961 (Reference 6). This report
includes a discussion of anisotropic relaxation time and extends deformation potential theory of

electron-phonon interaction to the anisotropic case.
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7. Drabble, J. R., and Wolfe, R., "Anisotropic Galvanomagnetic Effects in Semiconductors,"” Proc.
Phys. Soc. Section B vol. 69, pp. 1101-1108 (Reference 14). This paper shows the relation between
the components of the resistivity tensor and those of the conductivity tensor, and lists the explicit
evaluation of the energy integrals in the cases of weak and extreme degeneracy. A distinction be-
tween the model for valley distribution and the requirements of crystal symmetry is drawn to allow
use of the known group of symmetry transformations in computing the total conductivity for a single

crystal.

8. Keyes, R. W., "Isotropic Approximation to the Magnetoresistance of a Multivalley Semiconductor,"
Phys. Rev. vol. 109, pp. 43-46 (Reference 16). Keyes gives the averaging procedure for low field
conductivity, Hall conductivity, and magnetoconductivity and inverts to find the corresponding resistivi-
ties. A brief discussion of the validity of averaging techniques for the resistivity is found here. The
present paper follows the notation of this paper closely especially for case 1 in the section on the
“"Theory for Polycrystalline Materials,”” where the treatment parallels that of Keyes. (Footnote 4 in
Keyes' paper should be "Adv. in Phys. Vol. 5, 323, 1956," instead of ""Phil. Mag. Vol. 5, 323, 1956.")
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